Some peculiar features of hydrodynamic instability development.

نویسنده

  • E Meshkov
چکیده

We discuss the results of experiments that illustrate some features of a turbulent mixing zone (TMZ) structure at a gas-liquid interface (Rayleigh-Taylor instability) and at a gas-gas interface accelerated by shock waves (Richtmyer-Meshkov instability). The important feature is the existence of a heavier substance concentration (density) jump at the interface between the heavy medium and the TMZ. It is found that the existence of this jump is a generic feature of any developed TMZ and is the necessary condition for its continuous development. In the case of a gas-liquid interface, the stable existence of this jump is connected with the stability of the cupola of gas bubbles penetrating into the liquid in a TMZ. The important feature of the development of interface instability accelerated by an unsteady shock is the decaying ability (up to full suppression) of the interface instability in the case when a decaying wave passes through the interface in the direction from light gas to heavy gas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نا پایداری کلوین - هلمهولتز در اسپیکول‌های خورشیدی

Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different de...

متن کامل

Failure Prediction during uniaxial Superplastic Tension using Finite Element Method

Superplastic materials show a very high ductility. This is due to both peculiar process conditions and material intrinsic characteristics. However, a number of superplastic materials are subjected to cavitation during superplastic deformation. Evidently, extensive cavitation imposes significant limitations on their commercial application. The deformation and failure of superplastic sheet metals...

متن کامل

Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Larger Reynolds Numbers

Rapid angular momentum transport in accretion disks has been a longstanding astrophysical puzzle. Molecular viscosity is inadequate to explain observationally inferred accretion rates. Since Keplerian flow profiles are linearly stable in hydrodynamics, there exist only two viable mechanisms for the required turbulence: nonlinear hydrodynamic instability or magnetohydrodynamic instability. The l...

متن کامل

Hydrodynamic Resistance Reduction in Catamaran Assisted Hydrofoils

The present paper contains the test results of a planing catamaran model. The aim of the tests was to study the effect of hydrofoil in these types of crafts. First, experiments were carried out on the bare body (i.e. without hydrofoils) to obtain non-dimensional hydrodynamic resistance coefficient versus speed. Then, the model with hydrofoils, by various locations and attack angles were subject...

متن کامل

Hydrodynamic Resistance Reduction in Catamaran Assisted Hydrofoils

The present paper contains the test results of a planing catamaran model. The aim of the tests was to study the effect of hydrofoil in these types of crafts. First, experiments were carried out on the bare body (i.e. without hydrofoils) to obtain non-dimensional hydrodynamic resistance coefficient versus speed. Then, the model with hydrofoils, by various locations and attack angles were subject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 371 2003  شماره 

صفحات  -

تاریخ انتشار 2013